行情订阅

您是从 www.google.cn 搜索 三氧化二锑 来到这里。本站关注 三氧化二锑行情与技术,如果您是第一次来到这里,如果行情对您的工作有帮助,建议您订阅本博客的 AddThis Feed Button

公司荣誉

公司荣誉
星期三, 二月 21, 2007

电线电缆绝缘材料的选择---转



1.0 塑料的分类
1.1 Thermosetting 热固定塑料:( 电线极少用到 )初期亦为直链分子,加热软化只有短时间的可塑性

,随后分子起交联反应 ( Cross Linking ) 变成三度的空间结构,使得热固性塑料一但固化后无法重新

使用,如:EP, PDAP, SI……等。
1.2 热塑性塑料:分子结构多为直链型,它在常温下是固态,加热后即软化或液化成为可塑态,成型冷却

后又恢复固态,这样的性质可重复使用。
2.0 塑料的加工原理
2.1 塑料是高分子材料,高分子是由许多单体分子连接而成的巨大分子,这些分子通常成直链状,但由于

结构上的差异,有时主链分支而成短侧链或长侧链,甚至由于架桥作用而形成三度空间的纲状结构。这些

分子经常以C―C, C, C―O的共价组合。如下图a、b、c共价结合,分子间则籍氢键等互相吸引,这些巨

大的分子链互相吸引、重叠、纠缠、卷缠,形成块状的高分子聚合体,由于分子之极性与立体规则性的影

响,聚合体的集合状态有结晶形,也有无定形。塑料的物理性质与加工性,即是这些分子结构现象的综合

表现。
2.2 塑料加工是利用塑料形态变化的特性先将塑料熔化或软化,塑造成特殊形状后,使之硬化固定,一般

塑料加工的功能可归纳如下四种方式。
2.2.1 赋予材料可塑性:使材料流动或软化。
2.2.2 赋予形状:软化或流动的塑料成特殊外形。
2.2.3 硬化定形:使变成特殊形状的塑料保持不变的形状通常有几种方法。
a 降温冷却,使硬化定形﹔
b 移去溶剂使硬化定形﹔
c 利用化学的交联反应 (cross linking) 而硬化定形。
2.2.4 材料改质:利用加工手段,使塑料的内部结构产生化学或物理变化而提高价值。
一般塑料加工技朮均包含2.2.1,2.2.2,2.2.3三项功能而2.2.4材料改质则视产品设计需要而定。
3.0 塑料的性质
3.1 基本物理性质
a 比重﹔
b 分子量﹔
c 粘度﹔
d 假比重及粒径分布﹔
e 游离单体含量 ( 聚合程度 ) ﹔
f 吸水率﹔
g 透气率。
3.2 机械性质
3.2.1 抗张强度及伸长率,参考 UL或ASTM D638﹔
3.2.2 弯曲强度,参考 ASTM D790﹔
3.2.3 压缩强度,参考 ASTM D695﹔
3.2.4 冲击强度,参考 ASTM D256﹔
3.2.5 硬度:
(a) Rock Well Durometa 法 ( ASTM D785 )﹔
(b) Barcol Impressor 法 ( ASTM D785 )﹔
(c) Shore Durometa 法 ( ASTM D2240 )。
3.2.6 弹性系数:受外力作用变形后回复原来形状能力
3.3 热性质
3.3.1 热变形温度:显示塑料在高温受压下能否保持不变的外形。
3.3.2 软化点:受热而硬度降低,即将开始流动温度。
3.3.3 热传导率:热量在塑料材料中传导的速率。
3.3.4 热膨胀系数:塑料加热时尺寸膨胀的比率。
3.3.5 收缩率:收缩后与原模具设计尺寸的比例。
3.3.6 熔态指数又称熔化指数:通常用来判断热塑性塑料的加工性质。
3.4 化学性质
3.4.1 抗溶剂性:对酸、碱、醚、醇、酮、芳香烃、脂肪烃……等抵抗性。
3.4.2 燃烧性:为改善塑料的耐烧性通常添加难燃剂。
3.4.3 耐候性:受光、热、空气……等影响而引起的变质,劣化的抵抗性,包含在紫外光、氧、臭氧影响

下之安定性。
3.5 光学性质
3.5.1 透明度:可视光域的光透过率,分为透明、半透明、不透明。
3.5.2 雾度 ( Haze ):透明塑料内部或表面呈现模糊状的、雾状外观程度,雾状外观是由于光线散射而

引起的。
3.5.3 尚有其它要求之光泽度、折光率、黄色指数等。
3.6 电气特性
3.6.1 导电率及电阻率,导电性越高表示导电率越好,导电性越低表示导电率越差即绝缘性越好。
电阻率 102Ω/cm以下为导体﹔
电阻率 103〜108Ω/ cm为半导体﹔
电阻率 108Ω以上为绝缘体,
以上依ASTM D257为测试方法。
3.6.1.1 容积电阻:将绝缘体内部1cm3的立方体在其相对两面施加电压的电阻,以Ω-cm表示,详细方法

可查 JIS K6911或ASTM D527规定。
3.6.2 介电强度(Dielectric Strength)
绝缘体所能承受的介电破坏电压与其厚度的商值,可参考ASTM D149方法测试。
3.6.3 介电常数 (Dielectric Constant)
介电常数亦称电容率,为物体中电容与真空中电容的比值,可参考ASTM D150。
3.6.4 功率因子(Power Factor)
散逸于物质中电力对正弦曲线电压(V)与电流(I)乘积的比例,即:PF=W/(VI)=sinδ,sinδ为损

失角度,可参考ASTM D150。
3.6.5 散逸因子(Dissipation Factor)
施于介电物质之交流电压的正弦曲线与流过介电物质的电压曲线的夹角的余角。δ的正切值tanδ称为散

逸因子,可参考ASTM D150。
3.6.6 屏蔽效果(Shielding Effectiveness)
指减少电磁干扰(EMI)与射频干扰(RFI)的效应其,测定方法为:SE=20xLOG(Eb/Ea)。
Eb=:屏蔽前的电场强度﹔
Ea=:屏蔽后的电场强度。
3.7 加工性
要注意其流动性,热安定性,成型(押出)温度,融解温度点(融点),成形收缩率等问题。
4.0 塑料添加剂
添加剂是指分散在塑料分子构造中,不会严重的影响塑料的分子结构,而能改善其性质或降低成本的化学

物质,依其功能可分下述各类。
4.1 抗氧化剂(Antionxidant)
主要是防止塑料中的不饱和双键受氧原子侵袭而引起的品质劣化,如芳香胺类,烷基酚……等。
4.2 抗静电剂(Antistatic agent)
主要是赋予塑料细微的导电性,以避免因磨擦而造成静电的积存,如乙氧化胺类……等。
4.3 发泡剂
发泡剂主要有三类:
(a) 直接压入塑料熔胶中使发泡,压入气体有氮气、二氧化碳、空气……等。
(b) 挥发性液体,升温后挥发膨胀,而使塑料体发泡。常见有聚苯乙烯泡棉。
(c) 分解性化学发泡剂,一般为固体粉未,它们在加热时即分解放出气体(通常为氮或二氧化碳)常用

者为偶氮化合物(有机物)或无机盐类,如酸氢钠。
4.4 着色剂(染料)
分有机与无机两大类,又分为染料及颜料两大类。
4.5 难燃剂(又称防火剂)
当塑料暴露于火焰时,能压抑火焰之蔓延,防止烟雾形成,当火焰去掉时,燃烧便会停止,大致可分为二

大类型:
(a) 反应型:难燃剂常是卤化的单体,它可以参加反应与聚合体形成化学结合。
(b) 非反应型是含卤素、磷、氮、硼的化合物,它们与聚合体只作物理性的混合。
(c) 其它,如三氧化二石弟……等。
4.6 安定剂(Heat Stabilizer)
一般塑料均会在高温时分解劣化,以PVC最严重,PVC在100℃以上长时间加热,有少量盐酸游离出来,开

始分解,因此安定剂的添加是非常重要的,PVC安定剂可分为五类
(a) 铅盐安定剂——硬脂酸铅,三盐基硫酸铅,二盐基硬酯酸铅﹔
(b) 金属皂类安定剂——硬脂酸镁,硬脂酸钙﹔
(c) 镉钡液状安定剂有Cd—Ba系,Cd—Ba—Zn系, Ba—Zn系等﹔
(d) 有机锡安定剂,如:二丁锡二月桂酸盐等﹔
(e) 安定化助剂,如环氧化合物。
4.7 紫外光吸收剂(UV absorber)
受到高温能量的紫外光照射而发生劣化,因此户外使用的塑料必须添加此剂,将紫外光线吸收或遮断,如

水杨酸脂类。
4.8 冲击改质剂(Impact modifier)
加入具有特殊性质的树脂,可籍着混炼的方式增加,以改良塑料的耐冲击性,该剂也常影响到塑料的耐热

性,流动性,必须慎重选择。
4.9 滑剂(Lubricant)
可分内部与外部滑剂:内部滑剂的目的减少聚合分子间的磨擦,降低粘度,提高流动性﹔外部滑剂是使塑

料从金属模具表面易于脱模。常用滑剂有脂肪酸酯类或脂肪酯醯胺类、烃类 (如天然石腊),金属皂类


4.10 可塑剂(Plasticizer)
可塑剂为挥发性低的物质,添加于塑料时,能使塑料的弹性系数增加或减少,而于常温时增加柔软性,高

温时易于加工,以PVC为例,添加量愈多时制品愈软。可塑剂又分为一次可塑(主可塑剂)通常与树脂兼

容性良好,可单独使用﹔而二次可塑料剂(辅助可塑剂),其兼容性有限,只能添加少许量以改良性质。

可塑剂的主要分类:
(一) 酸酯类——如DOP, DBP等﹔
(二) 直链二元酸酯类:此为耐寒一次可塑剂如DOA等﹔
(三) 磷酸脂类:具有耐燃性,耐化学性如TCP﹔
(四) 环氧化油类、无毒性、耐菌性差如环氧大豆油﹔
(五) 苯三甲酸酯类,如TIDTM﹔
(六) 高分子类(又称聚酯可塑剂)特点:挥发性及移行性低,如Polyglycoladipate等﹔
(七) 其它,如脂族羟类。
4.11 硬化剂(Curing agent)
硬化剂目的在促进塑料形成交联结构称之硬化,其目的提高机械强度、耐热性、耐溶剂性、与尺寸稳定性

,如DCP ……等。
4.12 填充剂(Filler)
改善机械强度作为补强剂,增加重量作为增量剂,以降低成本,如高岭土,碳酸钙等。
4.13 其它
4.13.1 成核剂(Nucleating agent)有些无机粉未在发泡中可使泡棉结构更为细致。
导电剂:如碳烟,金属粉未等。
5.0 塑料调配设备
原料(配方)→混合→混炼→冷却(气冷或水冷)→切断 →胶粒
常用混合设备,如汉氏混合机(Henshel mixer)
常用混炼设备,有双螺杆或多段炼押出机﹔有捏合机(Kneader),以布氏双向捏合机(Buss Ko—

Kneader)最有名。
6.0 塑料的加工形式
有射出成型,押出成型……等。电线绝大部分用押出成形(Extrusion),是将热熔性塑料在加热筒内溶化

再用螺杆予以押出。
7.0 塑料之鉴别
7.1 燃烧法
依下述简易方法进行:
7.1.1 是否燃烧﹔
7.1.2 燃烧火焰颜色﹔
7.1.3 是否冒烟﹔
7.1.4 冒烟颜色﹔
7.1.5 烟为清烟或含炭灰之烟﹔
7.1.6 是否有溶胶滴落﹔
7.1.7 溶胶是否继续燃烧﹔
7.1.8 有何气味。
7.2 例举常用各种塑料性质
7.2.1 燃烧法
Teflon:遇火软化变形,有邹曲薄层,少量焦炭,微焦发味,不可燃性遇火软化。
PVC:绿色光罩,绿焰及黄焰滚滚冒出,软化冒出白烟并有盐酸味(自熄性塑料)。
PE:兰色光罩,燃烧区熔融透明,有熔胶滴落及蜡烛味(延烧性塑料)。
PP:兰色光罩,燃烧区熔融透明,有熔胶滴落及煤油味(延烧性塑料)。
PU:黑烟,有熔胶滴落,无焦灰,氮氧化合物味,延烧性。
Nylon: 兰色光罩,熔融,头发焦味,自熄性。
Silicone类: 无味,浓浓白烟,白色残余灰份,自熄性。
7.2.2 比重法
品名 PVC;Teflon;PE;PP
比重 硬质1.30-1.58软质1.16-1.35; 2.08-2.2 ;0.917-0.965;0.90-0.92
品名 PU;Nylon ;Silicone PVDF
比重 1.1-1.5 1.12-1.15 / 1.76-1.78
7.2.3 其它法如光谱分析法、溶剂鉴别法……等。
8.0 架桥的应用
8.1 塑料因为分子结构的关系,一般绝缘材料有其基本上无可克服的缺点。由于高分子聚合物绝缘材料是

由一群左右连接的分子组成,受热时,分子距离增大,进而造成聚合物分子结构变弱,变软甚至融化。因

此,若能在相邻分子长链横间架一些固定链,必能防止或减轻聚合物分子受热后产生劣化的现象,进而增

加其物理与机械性能,用于电气绝缘必甚有价值。在化学上,这种改变高分子聚合物分子结构为三度空间

纲状组织的过程称为交连反应(Crosslinking)。
在电线制成中,电子照射是达成使绝缘材料分子交连最有效的方法﹔可*度、均匀性与化学反应速率及其

再现性都相当高。尤其对于薄绝缘电线或较小型电缆的交连,电子照射更是绝佳的方法。面对各种电线产

品轻、薄、短、小的严格要求,电子照射交连提供了最佳的方向。在电线绝缘材料的“光谱”上,照射材

料(耐热等级90~150℃)正好填补了现有其它绝缘材料的“空缺”(一般材料耐热等级为60~105℃,高温

材料耐热等级为150~260℃)。照射绝缘材料同时兼顾了各项特性间的平衡,使电线使用者有了更宽广的

选择弹性与空
间。
8.2 架桥方法
(a) 电子照射 ( Electron Bean Irradiation ) ﹔
(b) 加硫﹔
(c) 空气,
以上以电子照射最好。
9.0 环境对策所衍生相关问题
因环境保护的重视,世界各国对于破坏环境的化学物质,法律明令禁止使用,如下所述物质皆为禁止使用

。镉和镉的化合物﹔PBB(多溴联苯)类和PBDE(多溴二苯醚)类﹔氯化石腊(氯阻燃剂 / 增塑剂)﹔
多氯联苯(PCB)类﹔多氯化奈类﹔有机锡化合物(三丁基锡类或三苯基锡类)﹔石棉﹔偶氮化合物﹔铅

和铅化合物﹔汞和汞化合物﹔六价铬及其化合物等其它有害环境物质。在世界各地(国)皆有相关法规和

政府管制法,及开始实施绿色伙伴制度的推动下,完全废止使用有害物质的推动已进入一个高速发展的阶

段。
9.1 塑料料金属含量管制
9.1.1 菲利蒲
菲利蒲内规管制镉含量小于5PPM,其内规有检测方法。
9.1.2 微软(microsoft)规范
(a) EN-71-1994 part3所规定﹔
(b) EN-1122检测方法镉含量5PPM以下﹔
(c) EPA-3050B检验方法铅含量小于90PPM。
9.1.3 日本Sony内规对其重金属含量有所规范
可详阅SS-00259规范。
不同。
9.1.4 重金属检出
参照各规范将重金属溶解出再利用AA法(原子吸收法)或ICP(感应藕合离子光谱分析法)进行检测。
9.2 低烟无卤材料(LSNH)
Low Smoke Non Halogen
9.2.1 卤素:氟(F),氯(Cl),溴(Br),碘(I), (At)
9.2.2 以PE+EVA为Base发展出低烟无卤素塑料材料须通过下述之试验,(尚无正确规范)以下仅拱参考。
1. Vertical Tray Flame Test 垂直架耐燃试验﹔
2. Smoke emission Test 烟浓度测试﹔
3. Toxicity index Test 毒气指数测试﹔
4. Corrosive gas Test 腐蚀气测试﹔
5. Oxygen index Test 氧指数测试。
说明:
1. 垂直架耐燃试验(IEEE 383)
仿真实际配线,多条电缆垂直并列在一起,下端用火焰烧20分钟,以检定电缆之耐燃性,耐燃测试中,电
缆若传导火焰,致使火源上之试样燃烧超过1.8M则判
定不合格,另若燃烧20分钟后关闭火源,电缆自行熄
灭则为合格,若继续燃烧,则记录持续时间及长度。
2. 烟浓度试验(ASTM E662)
于密闭燃烧室中用光线穿透率表来判定电缆材料焚烧(Flaming)或闷烧(Non-Flaming)所产生烟浓度。
3. 毒气指数测试(NES 713)
在指定条件下,材料在空气中燃烧之后所产生之某些特定气体之毒气因子(toxicity factor)的总和。
毒气因子系在1M3空间的空气中燃烧100g之试料产生之气体量(Co)与该气体在30分钟致人于死之气体浓

度(Cf)的比值。
Co:Toxicity Coefficient ( PPM ) ﹔
Cf:Danger Concertration ( PPM ) 。
4. 腐蚀气测试(AS 1660 5.4)
为间接测定自电缆上取下来之材料燃烧时所释放出来气体的腐蚀性,以酸碱值和导电度表示。
5. 氧指数测试(ASTM D2863)
在室温下刚好可以维持材料燃烧之氮氧混合气中氧的体积百分比。 氧指数的测定可以用来选择最佳的添

加物以增加材料耐燃性,以及决定理想的添加量。
9.2.3 氧指数(OI)[oxygen index]
依JIS K7201 规定:试片燃烧3分钟或是燃烧长度50mm所需之必要的最低氧气浓度。
试片长度70~150mm宽6.5mm厚3.0mm
10.0 PVC胶粒
10.1 基本配方
PVC粉:主体一般常用 S60、S65、S70﹔
可塑剂:主要目的在调整软硬度,提高耐寒绝缘等作用﹔
填充剂:目的在增强加热,光之安全性,及绝缘性﹔
改质剂:依特性要求添加﹔
安定剂:抑制PVC内之少量游离Cl-分解﹔
防火剂:增强耐烧性﹔
染颜料:颜色调配。
10.2 硬度
国际上常以shore A表示之,而国内软硬度常以P%表示,例如:50kg之PVC料,可塑剂40kg时是以80P,

50gPVC料,可塑剂55kg时是以110P表示即可塑剂愈多P数愈大,PVC胶粒愈软而萧氏硬度(shore A)度数愈

大,PVC胶粒愈硬。
10.3 移行说明
电气用品之外壳……等常用的塑料材质大部份为PS,ABS,HIPS,电线为PVC塑材料时,由于含有可塑剂(

软化剂),而有此可塑剂会移行者,会将PS,ABS,HIPS塑料壳侵蚀,因此有非移行的要求,也就是PVC材

料不能移。
10.3.1 移行的试验方法
将试片(ABS,或PS或HIPS)两片(长50x宽50x厚20mm),中间夹PVC电线,再上下两层用玻璃盖住并用500±

5g砝码压住,施以不同时间(24,48,72小时)不同温度(50℃,60℃,70±2℃)之条件下,测试(条件由客

户设定),测试后取出试片,用肉眼观察,试片上不能很轻易的看出痕迹,亦即需极费眼力才能看出来。
ABS = Acrylonitrile Butadiene Styrene Terpolymer
苯乙烯,丁二烯,丙烯,参聚合体
PS = POLYSTRRENE 聚苯乙烯
HIPS = High Impact Polystyrene 高冲击聚苯乙烯
10.3.2 PVC胶粒应具下列性质
耐热性 ( Thermal Stability ) ﹔
硬度 ( Hardness )﹔
安全性 ( Safety )﹔
老化性 ( Aging Properties ) ﹔
机械性质 ( Mechanical Properties )﹔
耐燃性 ( non-flammability )﹔
电气特性 ( Electrical Properties )﹔
耐候性 ( Weather ability )﹔
光安定性 ( Light Stability )﹔
低温特性 ( Low Temperature Properties )。
11.0 塑料常用特性名词解释
11.1 抗张强度:(Tensile Strength)
将试样(如哑铃片……等)拉断时所需要之应力,用之单位为PSI或kg/mm2。
11.2 热变形(Heat Distortion)
将材料适当的取样后,将其加热至一定之温度后,试验该材料之外形改变情况。其计算公式如下:
11.3 热冲击(Heat Shock)——试验材料稳定性方法之一,将材料在特定的时间内卷绕于规定之圆棒上

,暴露于高温中,不得有龟裂现象发生。
11.4 冷弯(Cold Bend)——将电缆之试样绕在规定之圆棒(Mandrel)上,而置于特定温度之冷室中,

通常为零下之温度。再将试样取出作弯曲试验,则可试验出材料之破坏程度或有无缺点。
11.5 延伸(Elongation)——试样拉断时的伸长情形
11.6 焊接性(日文:半田性)——PVC芯线等在焊接或热镀时其塑料部份后缩收,所以其材质要经X—RAY处

理成架桥,或改其塑料本身性质,如:SR—PVC。
11.7 老化(Aging)——仿真电缆经长时间的使用后,其物理性(抗张延伸)改变的情形。
11.8 额定温度(Temperature Rating)——绝缘材料在连续使用之情况下,其基本特性不会发生变化或

损失时,所能容许之最高温度。如交连PE为90℃,PVC有60℃,75℃,90℃,105℃,PE为75℃等。
11.9 额定电压(Voltage Rating)——依照规定或标准可连续实施于各种电缆电缆之最高允许电压。
11.10 绝缘阻抗(Insulation Resistance)——加于绝缘体两极间之电压与电流之比,以公式表示为R=

E/I,其单位一般用MΩ(百万欧姆表示之)。
11.11 耐电压(介质强度)(DielectricStrength)——绝缘材质在破坏之前所能承受之电压,介质强度

在材料中是一个非常重要特性,在同一种耐电压情况下,介质强度好的材质,其绝缘厚度可以较薄。
12.0 塑料之耐燃测试
依UL规定 UL Standard 94 分为水平燃烧(94—HB)及垂直燃烧
94V-0,94V-1,94V-2。
13.0 发泡
目的:在改变或降低成品的电容(介电常数)并使成品轻量化,小型化,进而节省材料,达到提高品质与

降低成本的最终目的,一般常用方法
(a) 物理发泡
(b) 化学发泡,化学发泡在加热过程中,发泡剂分解出大量气体。
14.0 颜色比较说明
色差公式说明及应用情形
14.1 HunterLab,ANLab,ANLab(40)(又名AN40)
以上色差公式为早期色差公式,目前极少使用。
ANLab之系数40用于转换单位大小以接近NBS单位。
14.2 JPC 79色差公式
染色者及色彩师学会(Socity of Dyers and Colourists,简称SDC)在1980年,Mc Donald 发表一个

JPC99色差,主要修改CIEL*a*b*之缺陷。
14.3 CMC 色差公式
1984年,JPC97以Clark,McDonald及Ring三人修改其中错误部份经过(SDC)的测色委员会(Color

Measurement Committee,简称CMC)通过,推荐色彩工业使用,命名为CMC色差公式。目前已在欧洲普遍

化,为英国国家标准,人眼吻合性佳。
14.4 BFD 色差公式
1986年英国布津大学罗明博士与Rigg经由知觉色差实验修改CMC,提出BFD色差公式。目前为瑞典之国家标

准。
14.5 M&S 色差公式
英国著名百货公司(Marks and Spencer)与ICS合作所创,前后有MS80,MS82,MS83,MS83A至MS89,此

公式主要用于该公司与其供货商允拒收颜色品管作业。目前较长用于纺织业。
14.6 CIEL*a*b*及CIEL*u*v*色差公式
1976年,国际照明协会(CIE)公布CIEL*a*b*及CIEL*u*v*两种色差公式供业者使用,其中CIEL*u*v*用于

色光之检验。CIEL*a*b*被广泛用于物体色(surface color)工业上,此色差公式为使用频率最高之公式

。但此色差公式经色彩物理学家研究与人眼观测之视觉色差不具吻合性。
15.0 常用之塑料简介(以目前我公司所用材料作介绍)
15.1 Polyvinyl Chloride 聚氯乙烯(PVC)
15.1.1 原料:氯乙烯单体。
15.1.2 制造方法:悬浊聚合,乳化聚合……等。
15.1.3 加工方法:射出,押出……等。
15.1.4 用途:可用于电线……等。
15.2 High Density Polyethylene 高密度聚乙烯(HD-PE)
15.2.1 原料:乙烯基,触媒。
15.2.2 加工方法:射出,押出,中空成型……等。
15.2.3 用途:可用于电线。
15.2.4 密度:0.941-0.958 g/cm3。
15.3 Low Density Polyethylene 低密度聚乙烯(LD-PE)
15.3.1 原料:乙烯基。
15.3.2 加工方法:射出,押出……等。
15.3.3 用途:可用于电线。
15.3.4 密度:0.910-0.925 g/cm3。
15.4 Linear Low-Density Polyethylene 直锁状低密度聚乙烯(LLDPE)
15.4.1 原料:乙烯基,α烯羟(olefines)。
15.4.2 加工方法:射出,押出……等。
15.4.3 用途:可用于电线。
15.5 Polypropylene 聚丙烯(PP)
15.5.1 原料:乙烯基,丙烯基。
15.5.2 加工方法:射出,押出……等。
15.5.3 用途:可用于电线。
15.6 Thrmo-Plastic-Polyurethane 聚胺基甲酸脂(PU)
15.6.1 原料:(a) Polyether 聚醚 (b) Polyester 聚脂类
15.6.2 加工方法:射出,押出……等。
15.6.3 用途:可用于电线。
15.7 Fluorocarbon 氟塑料 俗称:铁氟龙(Teflon)
15.7.1 原料:萤石(Fluorite),氟气体。
15.7.2 加工方法:射出,挤压,押出。
15.7.3 用途:可用于电线。
15.7.5 分类
(a) PTFE: 聚四氟乙烯树脂
(b) FEP : 四氟乙烯与六氟丙烯共聚物
(c) PFA : 四氟乙烯与全氟烷基乙烯基醚共聚物
(d) ETFE: 四氟乙烯与乙烯的共聚物
(e) C TFE ( Chlorotrifluoroethylene): 聚氟三氟乙烯树脂
(f) PVDF ( Poly Vinylidene Flouride): 聚氟偏氯聚乙烯
(g) Fluorocarbon Polymers: 铁氟龙(碳化氟物)
(h) Polytetrafluoroethylene (FTFE): 聚氟四化乙烯
(i) Fluorinated Ethylene propylene (FEP) : 六氟化丙烯
(j) Foam-FEP
(k) Foam-PTFE
15.8 Thrmo-Plastic-Elastomer 热可塑性弹性体 TPE
15.8.1 原料:大概分四系列
(a) Styrene系(苯乙烯)
(b) Olefines系(烯羟系)
(c) Polyestes系(聚脂系)
(d) Polyamide系(聚醯胺系)
15.8.2 加工成形:射出,押出……等。
16.0 绝缘体(Insulation)
16.1 目的:为导体绝缘。
16.2 常用材料一览表,如下:
种类主要用途 代表性产品特性PVC 一般60℃PVC TF……等广泛用于绝缘体,耐臭氧、耐油、耐药性优良

,硬度、耐寒性可调整配合,介电常数,散逸因素……等(常数)大架桥(照射,化学架桥)增加耐热性

,改变机械强度,耐有机溶剂性,焊接性SR-PVC( 半硬质PVC)有比较良好焊接性架桥有照射、化学、温水

、空气架桥,以电子照射(X-ray)效果最好 耐热PVC75℃,80℃,90℃,105℃ UL1007,1015,SVT……

等;
SR-PVC 80℃,90℃,105℃ UL1061……等
架桥PVC 125℃ UL1429,1430……等
PE 75℃,80℃同轴线,PE分为中高低密度PE、架桥、发泡PE。一般电气特性良好(如介电常数……等)机械

性、耐药性、耐溶剂性良好,对直射日光、紫外线性不良,及有热变形缺点,广泛用于高压线(绝缘性良

好),通信用线,发泡目的在改变介质常数进而改善衰减等电气特性
架桥PE 90℃
发泡PE 80℃ UL1354同轴线等
氟塑料 PTFE 260℃耐温度性(-70~+260℃)有良好的电气特性(比PE好),电气特性、不燃性、耐药品性良

好,可用于薄皮膜押出,高价、高品位电线,价格高,专用押出机,比重高,硬、耐屈曲性不良
PFA 250℃
EFP 200℃ UL1330,1332……等
ETFE 150℃ UL1829,1828……等
PVDF
PP(或发泡PP)80℃介电常数小,亦有发泡PP常用于传输信号线等;Elastomer弹性体 Polyester系聚脂系

列耐屈曲疲劳性良好、弹性佳,用于曲线绝缘或机械人线缆外被,硬度等级低时(软)体积抵抗低绝缘性不

良,押出时必须先干燥;Polyolefines聚烯烃类,比重0.9以下,电气特性良好,有适度的弹性及耐燃性,

常用于橡胶绝缘类之机械人用线之绝缘材料;天然橡胶(NR)天然橡胶绝缘线60℃,电气、机械、低温柔软

性良好、耐热性、耐油性差,可燃的Silicone橡胶耐温度环境性,耐候性,电气特性良好,机械特性耐磨

性差.
备 注 绝缘材料使用按场合应选择,最低体积抵抗在1015Ω以上
18.0 塑料的基本性质
18.1 塑料的物理性质
18.1.1 比重(density)
比重是指物质密度与水密度的比值,所谓密度是指单位体积的重量。比重的测定可依ASTM D792水中置换

法得。
18.1.2 吸水率
吸水率是测定塑料吸水份的程度,测法是先将样品烘干后称重,浸入水中24或48小时后,取出再称重,计

算重量增加的百分比,即为吸水率,一般吸水性太大之塑料材料,易影响机械强度与尺寸稳定性,如

Nylon或PET即是典型之例子。
18.1.3 透气率(Permeability)
透气率是测定塑料膜或塑料板气体穿透难易的程度,可依ASTM D1434的方法测定得。此在包装用途上是一

项重要之物性指针。
18.2 塑料的机械性质
18.2.1 抗张强度及伸长率(Tensile strength; Elongation)
抗张强度(又称抗拉强度)是指将塑料材料拉伸到某一程度(如降伏或断裂点)所需力的大小,通常以每单位

面积多少力来表示,而其拉伸的长度百分比即为伸长率。此项测定可依 ASTM D638之方法测试之。
18.2.2 弯曲强度(Yield Strength)
弯曲强度又称折曲强度,主要为测试塑料抗弯曲的能力,可依ASTM D790的方法测得,而常以每单位面积

多少力来表示,如kg/cm2。其测法如下图所示,将一ASTM标准试片,两端支撑起来,中间逐渐增加外力,

可测得其最大承受之弯曲强度。
18.2.3 弯曲弹性率
将塑试片弯曲时(测法如弯曲强度),在其弹性范围内,单位变形量所产生之弯曲应力称为试片之弯曲弹性

率, 一般弹性率越大,表示该塑料材料之刚性越好。
18.2.4 冲击强度(Impact Strength)冲击强度是指塑料受外力冲击时,所能承受的最大能量。ASTM D256

中是lzod及Charrpy冲击强度测试法为常见之测试方法,其中又以lzod最为普遍,其测试方法如下图所示


18.2.5 硬度(Hardness)
一般塑料的硬度最常用ROCKWELL(洛式硬度)及SHORE(萧式硬度)两种测试法来表示。其中SHORE D 则用来

测定较硬之塑料,如一般之泛用塑料及部份工程塑料,而多数之高性能工程塑料或较硬之工程塑料,则需

用 ROCKWELL来测定之。
18.3 塑料的热性质
18.3.1 热变形温度(HDT)
最常用的之热变形温度测定法为 ASTM D648 试验法,其测定方式是使试片在一定压力及一定温度下,弯

曲到一定程度时的温度。热变形温度显示塑料材料在高温且受压力下,能否保持不变的外形。若考虑安全

系数,短期使用之最高温度应保持低于热变形温度10℃温度左右,以确保不致因测试致使材料变形,热变

形温度之测试装置如下图所示:
18.3.2 长期耐热温度
长期耐热温度是指塑料材料在长时间使用之耐热性,依UL之规定,塑料材料长期使用温度是指塑料材料曝

露在高温下,须达数万小时,物性减半之温度。如UL746规定之长期耐热温度之曝晒时间为105小时,约相

当于11年之久。五大泛用工程塑料纯树脂与填加30%玻织之热变形温度及UL长期耐热温度比较
种类 HDT with 30 wt % GF(@ 18.6kg.cm2) UL 长期耐热温度 ℃Pure resin UL 长期耐热温度 ℃with

30 wt % GF
PBT 210 120 140
Nylon 200 105 115
POM 163 80 100
PC 145 110 130
MPPO 140 100 110
18.3.3 耐焊锡性
由于许多电子、电气零件必需借由焊锡来固定在印刷电路板上,而焊锡之温度相当高,例如:蒸气相焊接

或红外线焊接时,流动焊锡温度均高达270~280 ℃,因此,应用于此方面之塑料材料,必需在此温度下,

可持续耐45秒至75秒之耐热性,否则材料变形将致使零件松动,脱落之异常现象。
18.3.4 熔融指数(Melt Index , MI )
熔融指数简称MI,是一种表示塑料材料加工时流动性的数值。其测试方法是使塑料粒在一定时间(10分钟)

内,一定温度及压力(各种材料标准不同)下,被融化之塑料流体,通过一直径2.1mm圆管,所流出之克数

。其值越大,表示此塑料材料之加工流动性越佳,反之则越差,最常使用之测试标准为ASTM D1283。
射出加工一般都倾向使用MI值较高(>7)的等级﹔而吹瓶、押出加工则会使用较低MI的等级(200
聚丙烯 136~185
低密度聚乙烯 135~160
尼龙-66 130~140
ABS 50~85
PVC 60~80
PC 10~120
环氧树脂 45~120
三聚氰胺树脂(+α纤维素) 45~120
18.6.4 电磁波干扰(Electro Magnetic Interference , EMI)遮蔽性
由于电子、计算机、电机及通讯业的蓬勃发展,在我们日常生活的环境中充满来自各类电子或电机产品所

产生之电磁波,对某些精密电子或通讯设备而言,相当容易受干扰。绝缘性良好之塑料材料可为电磁波所

穿透,并不具备电磁波遮蔽能力。因此,要求符合EMI遮蔽效果之电子、计算机、电机或通讯设备,其使

用之塑料材料就必需具有EMI遮蔽效果,也就是必需具备导电性。
使塑料材料具备导电性之方法有下列几种:
a.导电性表面处理:如涂装导电材料,电镀及真空蒸煮等方法
b.导电性材料掺合:如加入金属粉未、碳黑、金属纤维等导电
c.导电性高分子合成:如Polypyrole等
导电性塑料材料依其表面电阻系数高低可分为三种不同的应用:
d.EMI遮蔽应用:表面电阻系数小于102Ω/sq
f.静电消散应用:表面电阻系数在102~106Ω/sq
g.抗静电应用:表面电阻系数有109~1013Ω/sq


消息來源

0 comments:

同行知名企业

 
Blogger Template Layout Design by [ Sam Xu ] : Code Name BlackCat 2.0.0